Subtype-specific differences in corticotropin-releasing factor receptor complexes detected by fluorescence spectroscopy.

نویسندگان

  • Laura Milan-Lobo
  • Ingrid Gsandtner
  • Erwin Gaubitzer
  • Dominik Rünzler
  • Florian Buchmayer
  • Gottfried Köhler
  • Antonello Bonci
  • Michael Freissmuth
  • Harald H Sitte
چکیده

G protein-coupled receptors have been proposed to exist in signalosomes subject to agonist-driven shifts in the assembly disassembly equilibrium, affected by stabilizing membrane lipids and/or cortical actin restricting mobility. We investigated the highly homologous corticotropin-releasing factor receptors (CRFRs), CRFR1 and -2, which are different within their hydrophobic core. Agonist stimulation of CRFR1 and CRFR2 gave rise to similar concentration-response curves for cAMP accumulation, but CRFR2 underwent restricted collision coupling. Both CRFR1 and CRFR2 formed constitutive oligomers at the cell surface and recruited beta-arrestin upon agonist activation (as assessed by fluorescence resonance energy transfer microscopy in living cells). However, CRFR2, but not CRFR1, failed to undergo agonist-induced internalization. Likewise, agonist binding accelerated the diffusion rate of CRFR2 only (detected by fluorescence recovery after photobleaching and fluorescence correlation spectroscopy) but reduced the mobile fraction, which is indicative of local confinement. Fluorescence intensity distribution analysis demonstrated that the size of CRFR complexes was not changed. Disruption of the actin cytoskeleton abolished the agonist-dependent increase in CRFR2 mobility, shifted the agonist concentration curve for CRFR2 to the left, and promoted agonist-induced internalization of CRFR2. Our observations are incompatible with an agonist-induced change in monomer-oligomer equilibrium, but they suggest an agonist-induced redistribution of CRFR2 into a membrane microdomain that affords rapid diffusion but restricted mobility and that is stabilized by the actin cytoskeleton. Our data show that membrane anisotropy can determine the shape and duration of receptor-generated signals in a subtype-specific manner.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lateral Hypothalamus Corticotropin Releasing Hormone Receptor-1 Inhibition Modulates Stress- Induced Anxiety Behavior

Stress is a reaction to unwanted events disturbing body homeostasis which influences its pathways and target areas. Stress affects the brain through the lateral hypothalamic area (LHA) orexinergic system that mediates the effect of corticotropin-releasing hormone (CRH) through CRH receptor type 1 (CRHr1). Therefore, this study explores the outcome of stress exposure on anxiety development and t...

متن کامل

Stress and the gastrointestinal tract III. Stress-related alterations of gut motor function: role of brain corticotropin-releasing factor receptors.

Alterations of gastrointestinal (GI) motor function are part of the visceral responses to stress. Inhibition of gastric emptying and stimulation of colonic motor function are the commonly encountered patterns induced by various stressors. Activation of brain corticotropin-releasing factor (CRF) receptors mediates stress-related inhibition of upper GI and stimulation of lower GI motor function t...

متن کامل

Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response

Corticotropin-releasing factor (CRF) is the hallmark brain peptide triggering the response to stress and mediates-in addition to the stimulation of the hypothalamus-pituitary-adrenal (HPA) axis-other hormonal, behavioral, autonomic and visceral components. Earlier reports indicate that somatostatin-28 injected intracerebroventricularly counteracts the acute stress-induced ACTH and catecholamine...

متن کامل

Corticotropin Releasing Factor Receptor 1–Deficient Mice Display Decreased Anxiety, Impaired Stress Response, and Aberrant Neuroendocrine Development

Corticotropin releasing factor (CRF) is a major integrator of adaptive responses to stress. Two biochemically and pharmacologically distinct CRF receptor subtypes (CRFR1 and CRFR2) have been described. We have generated mice null for the CRFR1 gene to elucidate the specific developmental and physiological roles of CRF receptor mediated pathways. Behavioral analyses revealed that mice lacking CR...

متن کامل

Cloning and characterization of a functionally distinct corticotropin-releasing factor receptor subtype from rat brain.

The present study reports the isolation of a cDNA clone that encodes a second member of the corticotropin-releasing factor (CRF) receptor family, designated as the CRF2 receptor. The cDNA was identified using oligonucleotides of degenerate sequence in a PCR paradigm. A PCR fragment obtained from rat brain was utilized to isolate a full-length cDNA from a rat hypothalamus cDNA library that encod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 76 6  شماره 

صفحات  -

تاریخ انتشار 2009